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Genome Association Studies of Complex Diseases by Case-Control Designs
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One way to perform linkage-disequilibrium (LD) mapping of genetic traits is to use single markers. Since dense
marker maps—such as single-nucleotide polymorphism and high-resolution microsatellite maps—are available, it
is natural and practical to generalize single-marker LD mapping to high-resolution haplotype or multiple-marker
LD mapping. This article investigates high-resolution LD-mapping methods, for complex diseases, based on hap-
lotype maps or microsatellite marker maps. The objective is to explore test statistics that combine information
from haplotype blocks or multiple markers. Based on two coding methods, genotype coding and haplotype coding,
Hotelling’s statistics and are proposed to test the association between a disease locus and two haplotype2T T TG H

blocks or two markers. The validity of the two statistics is proved by theoretical calculations. A statistic ,2T TC

an extension of the traditional method of comparing haplotype frequencies, is introduced by simply adding the2x

test statistics of the two haplotype blocks together. The merit of the three methods is explored by calculation2x

and comparison of power and of type I errors. In the presence of LD between the two blocks, the type I error of
is higher than that of and , since ignores the correlation between the two blocks. For each of the threeT T T TC H G C

statistics, the power of using two haplotype blocks is higher than that of using only one haplotype block. By power
comparison, we notice that has higher power than that of , and has higher power than that of . In theT T T TC H H G

absence of LD between the two blocks, the power of is similar to that of and higher than that of . Hence,T T TC H G

we advocate use of in the data analysis. In the presence of LD between the two blocks, takes into accountT TH H

the correlation between the two haplotype blocks and has a lower type I error and higher power than . Besides,TG

the feasibility of the methods is shown by sample-size calculation.

Introduction

With the development of the Human Genome Project
and of high-resolution microsatellite and early chro-
mosomewide haplotype maps of the human genome,
enormous amounts of genetic data on human chromo-
somes are becoming available. The opportunities for ge-
nomewide scans to map complex-disease genes are tre-
mendous. However, it is not yet clear how to extract the
most useful information for mapping complex-disease
genes. To fully utilize the massive amount of genetic data
for mapping complex-disease genes, novel mathematical
and statistical methods are crucial. One urgent need is
to explore statistical approaches of high-resolution hap-
lotype or multiple-marker linkage disequilibrium (LD)
mapping of complex diseases. One way to perform LD
mapping of genetic traits is to use single markers. Since
dense marker maps—such as single-nucleotide poly-
morphism (SNP) and high-resolution microsatellite
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maps—are available (Broman et al. 1998; The Inter-
national SNP Map Work Group 2001; Kong et al. 2002),
it is natural and practical to generalize single-marker
LD mapping to high-resolution haplotype or multiple-
marker LD mapping. With the recent discovery of hap-
lotype block structures in the human genome and with
the development of early chromosomewide haplotype
maps, it is important to develop better statistical meth-
ods for analysis of data on SNPs, haplotype patterns,
and related patterns of LD. The chromosomewide hap-
lotype maps are expected to be key resources for map-
ping complex-disease genes. For example, a systematic
case-control analysis of common haplotype variants in
the human genome would reveal major causative genetic
contributions to a disease.

For a case-control study, one can use a statistic to2x

test the null hypothesis that the marker allele or hap-
lotype frequencies are equal in the cases and controls
on the basis of a multiple-allele marker (Olson and Wijs-
man 1984; Chapman and Wijsman 1998; Nielsen et al.
1998; Kaplan and Morris 2001). The method, however,
can not be directly used for multiple markers or hap-
lotype blocks, since the phase of a double heterozygote
may be unknown (Ott 1999, p. 7). For multiple biallelic
markers, such as SNPs, Xiong et al. (2002) proposed a
Hotelling’s statistic for LD mapping of qualitative2T
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Table 1

Genotype and Haplotype Codings for a Block H1

with Three Haplotypes

Hap1i

CODING FOR METHOD

Genotype Coding Haplotype Coding

H H11 11 10000 20

H H12 12 01000 02

H H13 13 00000 00

H H11 12 00100 11

H H11 13 00010 10

H H12 13 00001 01

traits for case-control studies, which can not be used
for haplotype block data with multiple haplotypes.
Hence, it is necessary to develop methods of genomic
LD mapping of qualitative trait loci based on haplotype
block data or multiple-marker data for case-control
studies.

This paper investigates methods of high-resolution
LD mapping for complex diseases based on haplotype
maps or microsatellite marker maps. The objective is to
explore test statistics that combine information from
haplotype blocks or multiple markers. For uniformity
of notation, we use “haplotype blocks” or simply
“blocks” in our analysis, which can be changed to “mul-
tiallelic markers.” We are interested in developing sta-
tistical methods for efficient use of genomic patterns of
LD to identify genetic variants that contribute to qual-
itative complex diseases on the basis of multiallelic
markers or haplotype block data in a case-control study.
Based on two coding methods, genotype coding and
haplotype coding, we propose Hotelling’s statistics2T
to test the association between a disease locus and two
haplotype blocks. The statistical property of the above

statistics will be investigated. An extension of tra-2T
ditional method of comparing haplotype frequencies2x

is proposed by simply adding two test statistics of2x

the two haplotype blocks together. The merit of the
three methods will be explored by calculation and com-
parison of power and type I errors. Also, the feasibility
of the methods is shown by calculation of sample sizes.

Methods

Test Statistics

Suppose that a disease locus D is flanked by two hap-
lotype blocks and , where is a haplotype blockH H H1 2 1

on the left-hand side of D and is a haplotype blockH2

on the right-hand side. Let us denote the haplotypes of
block by and the haplotypes of blockH H , … ,H1 11 1l

by , where l and r denote the number ofH H , … ,H2 21 2r

observed haplotypes of blocks and , respectively.H H1 2

Consider a case-control design with N cases from an
affected population and M controls from a unaffected
population. Let us define a coding vector for each case
or control by one of the following two ways (Schaid
1996, p. 430).

Genotype coding.—For the ith case, let be his/Hap1i

her two haplotypes at block , and let be his/H Hap1 2i

her two haplotypes at block . Depending on the hap-H2

lotypes (or ), let us define an indicator vectorHap Hap1i 2i

(or ) that contains exactly one component withX X1i 2i

value 1 and other components with value 0. That is,

,tX p [x , … ,x ,x , … ,x ,… ,x ] X p1i 1i1 1i(l�1) 1i12 1i1l 1i(l�1)l 2i

, andt[x , … ,x ,x , … ,x ,… ,x ]2i1 2i(r�1) 2i12 2i1r 2i(r�1)r

X1iX p ,i ( )X2i

where the indicator variables , , , andx x ,j ! k x1ij 1ijk 2is

are defined byx ,s ! t2ist

1 if Hap p H H1i 1j 1jx p ,1ij {0 else

1 if Hap p H H2i 2s 2sx p ,2is {0 else

1 if Hap p H H1i 1j 1kx p ,1ijk {0 else

1 if Hap p H H2i 2s 2tx p . (1)2ist {0 else

The dimension of (or ) is (orX X l(l � 1)/2 � 11i 2i

)—that is, the total number (orr(r � 1)/2 � 1 l(l � 1)/2
) of genotypes of haplotype block (or )r(r � 1)/2 H H1 2

minus 1 to remove the redundancy.
Haplotype coding.—Define ,…, , ,X p [z z zi 1i1 1i(l�1) 2i1

…, , where is the number of haplotypestz ] z H2i(r�1) uij uj

for the ith case, i.e.,

2 if Hap p H H1i 1j 1j

z p 1 if Hap p H H ,k( j ,1ij 1i 1j 1k{0 else

2 if Hap p H H2i 2s 2s

z p 1 if Hap p H H ,t( s . (2)2is 2i 2s 2t{0 else

For the ith control, one may define a vector in theYi

same way. To illustrate the above coding methods, table1
gives an example of genotype and haplotype codings for
a block with three haplotypes. The coding methodH1

for block is similar.H2

Let and be the mean
— —N M
X p � X /N Y p � Y /Mi iip1 ip1
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vectors. Define a pooled-sample variance-covariance
matrix by

1
S p

N � M � 2
N M

— — — —t t# (X � X)(X � X) � (Y � Y)(Y � Y) .[� � ]i i i i
ip1 ip1

A Hotelling’s statistic can be defined as2T

NM — — — —2 t �1T p (X � Y) S (X � Y)
N � M

(Hotelling 1931; Anderson 1984). Hereafter, we will de-
note the Hotelling’s for haplotype coding as and2T TH

the Hotelling’s for genotype coding as . Assume2T TG

that the sample sizes N and M are sufficiently large that
the large-sample theory applies. Under the null hypoth-
esis of no association, the statistic (or ) is asymp-T TH G

totically distributed as central with (or2x l � r � 2
) df. Under the alter-[l(l � 1)/2 � 1] � [r(r � 1)/2 � 1]

native hypothesis of association, (or ) is asymp-T TH G

totically distributed as noncentral . If only one hap-2x

lotype block is used in the analysis, the Hotelling’sH1

for haplotype coding will be denoted as , and the2T TH1

Hotelling’s for genotype coding will be denoted as2T
. Under the null hypothesis of no association, theTG1

statistic (or ) is asymptotically distributed as cen-T TH1 G1

tral with (or ) df. Under the alter-2x l � 1 l(l � 1)/2 � 1
native hypothesis of association, (or ) is asymp-T TH1 G1

totically distributed as noncentral . Similarly, one may2x

introduce test statistics (or ) if only one haplotypeT TH2 G2

block is used in the analysis.H2

If each of haplotype block has only two haplotypesHu

, then the Hotelling’s by haplotype2H ,H ,u p 1,2 Tu1 u2

coding described above coincides with the test statistic
introduced by Xiong et al. (2002). To see this, notice
that , where is equal to thez p 1 � (z � 1) z � 1ui1 ui1 ui1

indicator variable (defined in Xiong et al. [2002], p.Xij

1257). Hence, our method generalizes the method of
using two biallelic markers in Xiong et al. (2002) to two
haplotype blocks with multiple haplotypes.

In the definition above, we consider only two hap-
lotype blocks and . In practice, the test statisticsH H1 2

and can be easily generalized to multiple haplotypeT TH G

blocks. To make the notation as simple as possible, we
will focus on two haplotype blocks throughout the pre-
sent article. In appendices A, B, and C, we will justify
the use of the Hotelling’s as an appropriate statistic2T
to test association between the disease locus and the
haplotype blocks by either the genotype coding method
or the haplotype coding method. The basic idea is to
show that the expectation of difference is equal

— —
X � Y

to 0 if there is no association between the disease locus

and the haplotype blocks. Then one may construct a test
statistic based on the difference vector , which

— —
X � Y

leads to the Hotelling’s .2T

Noncentrality Parameters

Let andS p Cov {[z , … ,z ]FAff} S pA1 1i1 1i(l�1) A2

,…, be variance-covariance matri-Cov {[z z ]FAff}2i1 2i(r�1)

ces of vectors and , re-t t[z , … ,z ] [z , … ,z ]1i1 1i(l�1) 2i1 2i(r�1)

spectively, in affected individuals. Similarly, let S pĀ1

andCov {[z , … ,z ]FUnaff} S p Cov {[z , … ,¯1i1 1i(l�1) A2 2i1

be variance-covariance matrices of col-z ]FUnaff}2i(r�1)

umn vectors and int t[z , … ,z ] [z , … ,z ]1i1 1i(l�1) 2i1 2i(r�1)

controls. Let (ort� �D p [D , … ,D ] D p1 11 1(l�1) 2

) be the column vector of measures oft[D , … ,D ]21 2(r�1)

LD between haplotype block (or ) and the diseaseH H1 2

locus D. Let be the average effect of gene substitutionaD

and , and let A be the disease prevalence ina p �a¯ D D

population and (appendix A). Based onĀ p 1 � A
and , given in equation (A5) ofE(z FAff) E(z FUnaff)uij uij

appendix A, the noncentrality parameter of Hotell-lHu

ing’s test statistic is given byTHu

2¯4(a /A � a /A) NM¯D D
l pHu N � M

�1(N � 1)S � (M � 1)S ¯Au Aut� �#D D ,u p 1,2 .[ ]u uN � M � 2

The elements of variance-covariance matrices andSAu

are calculated in appendix D. If the haplotypeS HĀu u

has only two haplotypes— and —thenH ,H N p Mu1 u2

p � �2 2¯l 4ND (a /A a /A) [Var (z FAff) Var (z F¯H u1 D D ui1 ui1u

, where and are�1Unaff)] Var (z FAff) Var (z FUnaff)ui1 ui1

given in equations (D1) and (D2) in appendix D.
Let beS p Cov {[z , … ,z ,z , … ,z ]FAff}A 1i1 1i(l�1) 2i1 2i(r�1)

a variance-covariance matrix of column vector
in affected individuals.t[z , … ,z ,z , … ,z ]1i1 1i(l�1) 2i1 2i(r�1)

Similarly, let S p Cov {[z , … ,z ,z , … ,z ]FĀ 1i1 1i(l�1) 2i1 2i(r�1)

be a variance-covariance matrix of column vectorUnaff}
in controls. Let us denotet[z , … ,z ,z , … ,z ]1i1 1i(l�1) 2i1 2i(r�1)

�D� 1D p .�( )D2

Then the noncentrality parameter of Hotelling’s testlH

statistic is given byTH

2¯4(a /A � a /A) NM¯D D
l pH N � M

�1(N � 1)S � (M � 1)S ¯A At� �#D D .[ ]
N � M � 2
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Table 2

Type I Errors at Significance Level using Two Haplotypea p 0.01
Blocks and withH , l p 2, P(H ) p P(H ) p 0.50 H N p M p1 11 12 2

100

MODEL

AND

TEST SIZEa

TYPE I ERROR

Mean SD Minimum Maximum

I:b

TG 101 .012 .001 .009 .014
TH 101 .011 .001 .008 .014
TC 101 .026 .001 .022 .030

II:c

TG 101 .015 .001 .012 .018
TH 101 .012 .001 .010 .015
TC 101 .017 .001 .014 .021

III:d

TG 101 .020 .001 .018 .023
TH 101 .013 .001 .011 .015
TC 101 .016 .001 .012 .018

IV:e

TG 101 .020 .001 .016 .023
TH 101 .013 .001 .011 .016
TC 101 .010 .001 .007 .012

a Size is the total number of type I errors calculated for each statistic
under a specific model.

b In model I, , andr p 2, P(H ) p P(H ) p 0.50 D p �21 22 H H11 21

.D p 0.20H H11 22
c In model II, ,r p 3, P(H ) p 0.4,P(H ) p P(H ) p 0.3021 22 23

and .D p 0.15, D p D p �0.075H H H H H H11 21 11 22 11 23
d In model III, ,r p 4, P(H ) p P(H ) p P(H ) p P(H ) p 0.2521 22 23 24

D p P(H H ) � P(H )P(H ) p 0.075, D p P(H H ) �H H 11 21 11 21 H H 11 2211 21 11 22

P(H )P(H ) p 0.075, D p P(H H ) � P(H )P(H ) p �11 22 H H 11 23 11 2311 23

and .0.075, D p P(H H ) � P(H )P(H ) p �0.075H H 11 24 11 2411 24
e In model IV, all parameters are the same as those of model III,

except that .D p D p D p D p 0H H H H H H H H11 21 11 22 11 23 11 24

The elements of variance-covariance matrices andSA

are calculated in appendices D and E. The noncen-SĀ

trality parameter (or or ) of (or orl l l T TG G1 G2 G G1

) is given in appendix F.TG2

For a case-control study using only one haplotype
block , one may use a statistic to test the null2H x1

hypothesis that the haplotype frequencies are equal in
the cases and controls (Olson and Wijsman 1994; Chap-
man and Wijsman 1998; Kaplan and Morris 2001). As-
sume that N cases and N controls are sampled. Then
the test statistic is given by l ˆT p 2N� (p �C1 1jjp1

, where is the frequency of haplotype2 ˆ ˆˆ ˆq ) /(p � q ) p1j 1j 1j 1j

in the cases, and is the frequency of haplotypeˆH q1j 1j

in the controls. Using haplotype block , one mayH H1j 2

construct a similar test statistic r ˆT p 2N� (p �C2 2jjp1

, where is the frequency of haplotype2 ˆ ˆˆ ˆq ) /(p � q ) p2j 2j 2j 2j

in the cases, and is the frequency of haplotypeˆH q2j 2j

in the controls. Using both haplotype blocks andH H2j 1

, one may construct a test statistic byH T p T � T2 C C1 C2

summing and together. If the two statisticsT T TC1 C2 C1

and are independent, is asymptotically distributedT TC2 C

as central , with df under the null hy-2x l � r � 2l�r�2

pothesis of no association. Under the alternative hy-
pothesis, it is asymptotically distributed as noncentral

, where ,2x (l ) l p l � ll�r�2 C C C1 C2

l 2[P(H FAff) � P(H FUnaff)]1j 1j
l p 2N�C1 P(H FAff) � P(H FUnaff)jp1 1j 1j

l 22a a D¯D D 1jp 2N � ,[ ] �¯ ¯A A D (a /A � a /A) � 2P(H )¯jp1 1j D D 1j

and r2 2¯l p 2N[a /A � a /A] � D /[D (a /A �¯C2 D D 2j 2j Djp1

. To calculate , one needs to notice¯a /A)�2P(H )] l¯ D 2j C1

that , and so the conditionalP(H FAff) p E(z FAff)/21j 1ij

expected frequencies andP(H FAff) p D a /A � P(H )1j 1j D 1j

(appendices A and C).¯P(H FUnaff) p D a /A � P(H )¯1j 1j D 1j

However, the independence of and can be trueT TC1 C2

only in the case that there is linkage equilibrium between
the two blocks. Hence, may not be a valid test statisticTC

unless one has strong evidence that the two blocks are
in linkage equilibrium.

Results

Type I Errors

To explore the performance of the test statistics, we
calculate type I errors for statistics , and forT , T TC H G

the four scenarios in table 2. We simulate 10,000 sam-
ples under an assumption of penetrance probabilities

, which implies that the(f ,f ,f ) p (0.05,0.05,0.05)DD Dd dd

disease is not associated with the two haplotype blocks.
Every sample contains 100 cases and 100 controls
( ). For each sample, we calculate the em-N p M p 100

pirical test statistics , , and . The type I error isT T TC H G

calculated by dividing the count of those empirical test
statistics, which are greater than or equal to the cut-off
point at the significance level , by 10,000. Wea p 0.01
repeat the above process a total of 100 times to get 101
type I errors for each of the test statistics , , andT TC H

for the four models in table 2. On the basis of theTG

101 type I errors of each statistic, we calculate their
mean, standard deviation (SD), minimum, and maxi-
mum, which are presented in table 2. For model I in
table 2, a strong LD between the two blocks H , l p1

and is assumed ( ); in this2, H , r p 2, D p 0.202 H H11 21

case, the type I error of (mean 0.026) is much greaterTC

than those of (mean 0.011) and (0.012). In modelT TH G

II in table 2, we assume that block has two haplotypesH1

and the block has three haplotypes, and the measuresH2

of LD are and ; in thisD p 0.15 D p �0.075H H H H11 21 11 22

case, the type I error of (mean 0.017) is the highest,TC

and (mean 0.015) has higher type I error thanT TG H

(mean 0.012). In models III and IV of table 2, the block
has four haplotypes; in model III, the measuresH2
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Figure 1 QQ plot at significance level using two haplotype blocks and . In graphs I.1, I.2, and I.3, all parametersa p 0.01 H , l p 2, H1 2

are the same as those of model I in table 2. In graphs II.1, II.2, and II.3, all parameters are the same as those of model II in table 2. In graphs
III.1, III.2, and III.3, all parameters are the same as those of model III in table 2. In graphs IV.1, IV.2, and IV.3, all parameters are the same
as those of model IV in table 2.

of LD are andD p D p 0.075 D pH H H H H H11 21 11 22 11 23

, and in model IV, the two blocks areD p �0.075H H11 24

in linkage equilibrium; in these two cases, the type I
errors of (mean 0.20) are the highest, which may beTG

due to the large degree of freedom of . With LD (modelTG

III), (mean 0.16) has a slightly higher type I errorTC

than (mean 0.13); without LD (model VI), (meanT TH H

0.013) has a slightly higher type I error than (meanTC

0.010). Figure 1 shows the QQ plot for each statistic of
, , and for the four models in table 2. Each ofT T TC H G

the QQ plots in figure 1 is drawn by comparing 10,000
sample statistic values with 10,000 related -distribu-2x

tion values (X-axis). These QQ plots are consistent with
the results of table 2. Moreover, it is evident that the
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Table 3

First Set of Parameters of Simulated Genetic
Models

Model Type fDD fDd fdd

Heterogeneous recessive 1.00 .05 .05
Heterogeneous dominant 1.00 .95 .05
Additive 1.00 .50 .0
Multiplicative .81 .045 .0025

Table 4

Second Set of Parameters of Simulated Genetic
Models

Model Type fDD fDd fdd

Heterogeneous recessivea .16 .04 .04
Heterogeneous dominantb .08 .08 .02
Additivec .108 .0675 .027
Multiplicatived .12 .06 .03

a .f p 4f p 4fDD Dd dd
b .f p f p 4fDD Dd dd
c .f p 4f , f p (f � f )/2DD dd Dd DD dd
d .f p 4f , f p 2fDD dd Dd dd

type I error level of statistic is reasonable forT N pH

.M p 100

Power Calculation and Comparison

To calculate the noncentrality parameters, we assume
a deterministic population genetic model. Assume that
a single disease mutation was introduced into the pop-
ulation T generations ago, with a frequency . First,PD

we consider only one haplotype block . AtH , u p 1,2u

the initial generation of the occurrence of the muta-
tion, the haplotype frequencies andP(H D)(0) p Pu1 D

l, if , or r,P(H D)(0) p 0,j p 2, … , u p 1 j p 2, … ,uj

if . Moreover, andu p 2 P(H d)(0) p P(H ) � Pu1 u1 D

if , orP(H d)(0) p P(H ),j p 2, … ,l u p 1 j p 2, … ,ruj uj

if . Let be the recombination fraction betweenu p 2 vu

haplotype block and disease locus . GivenH D,u p 1,2u

a map distance between haplotype block and dis-l Hu u

ease locus D, the recombination fraction can be cal-vu

culated by Haldane’s map function v p [1 � exp (�u

, under the assumption of no interference. At gen-2l )]/2u

eration T, the haplotype frequencies can be approxi-
mately calculated by �TvuP(H D)(T) p P(H D)(0)e �uj uj

and�Tv �Tvu uP P(H )(1 � e ) P(H d)(T) p P(H d)(0)e �D uj uj uj

, if , or , if�TvuP P(H )(1 � e ),j p 1, … ,l u p 1 j p 2, … ,rd uj

. Second, we consider both haplotype blocksu p 2 H1

and . At the initial generation of the occurrence ofH2

mutation, the haplotype frequencies P(H DH )(0) p11 21

and andP P(H DH )(0) p 0,j p 1, … ,l,s p 1, … ,r,D 1j 2s

. That is, the disease-susceptibility allele D(j,s) ( (1,1)
was carried by haplotype at the initial generationH H11 21

of mutation. The other initial haplotype frequencies are
andP(H dH )(0) p P(H H ) � P P(H dH )(0) p11 21 11 21 D 1j 2s

and .P(H H ),j p 1, … ,l,s p 1, … ,r (j,s) ( (1,1)1j 2s

At generation T, the haplotype frequencies can
be approximately calculated by P(H DH )(T) p1j 2s

� ��T(v �v ) �Tv �Tv1 2 2 1D (0)e P(H )D (0)e P(H )D (0)ejDs 1j 2s 2s 1j

� andP(H )P P(H ) P(H dH )(T) p P(H H ) �1j D 2s 1j 2s 1j 2s

l, r, whereP(H DH )(T),j p 1, … , s p 1, … , D (0)1j 2s jDs

p � � �P(H DH )(0) P(H )D (0) P(H )D (0)1j 2s 1j 2s 2s 1j

is the measure of initial LD at the threeP(H )P P(H )1j D 2s

loci for haplotypes and ,H H D (0) p P(H D)(0) �1j 2s 1j 1j

is the measure of initial LD between haplotypeP(H )P1j D

and disease locus D, andH D (0) p P(DH )(0) �1j 2s 2s

is the measure of initial LD between haplotypeP P(H )D 2s

and disease locus D (Akey et al. 2001).H2s

To make a power comparison, we consider four ge-
netic models: heterogeneous recessive, heterogeneous
dominant, additive, and multiplicative. First, we con-
sider optimistic penetrance probabilities and genotype
relative risks given in table 3 (Nielson et al. 1998). For
less optimistic models, with lower penetrance probabil-
ities and genotype relative risks, we consider the four
models in table 4. For each model in table 4, the pop-
ulation disease prevalence is ∼0.05 and the sib recurrence
risk is ∼0.06 (Iles 2002). We assume that the distance
between the two haplotype blocks is 4 cM. The block

is located at position 0 cM, and the block isH H1 2

located at position 4 cM. Since the disease locus D is
usually unknown, we assume that it is located in the
interval between and . Given the location of dis-H H1 2

ease locus D, the map distance between and Dl Hu u

can be used to calculate the recombination fraction vu

by Haldane’s map function, cM.u p 1,2, l � l p 41 2

To calculate the power, we first partition the interval of
4 cM between block and to be 100 subintervalsH H1 2

with 101 end-points. Given that the disease locus D is
located at an end-point, we may perform power calcu-
lation at this locus. We assume that the haplotype H1

has two haplotypes and with equal frequencies,H H11 12

and for the fourP p 0.10, N p M p 100, T p 50D

models in table 3. For the four models in table 4,
. For each genetic model inP p 0.30, N p M p 500D

table 4, figures 2, 3, and 4 show power curves of
and for haplotypes ofT ,T ,T ,T ,T , T r p 2,3,4C H G C2 H2 G2

block , respectively. The related parameters, such asH2

measures of LD between block and block , areH H1 2

given in the legend of each figure. First, it is clear from
these three figures that the power of using two haplotype
blocks is generally higher than that of using one block.
When the disease locus D is far from block , the powerH2

of using two haplotype blocks is significantly higher.
When the disease locus D is close to block , the powerH2

of using two haplotype blocks is similar to that of using
only one block . Second, the power of is generallyH T2 C

higher than or similar to that of , and the power ofTH
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Figure 2 Power curves of , , , and at significance level , using two haplotype blocks , andT , T T T , T T a p 0.01 H , l p 2 H ,C H G C2 H2 G2 1 2

, when ,r p 2 P(H ) p P(H ) p P(H ) p P(H ) p 0.50 D p P(H H ) � P(H )P(H ) p 0.075, D p P(H H ) � P(H )P(H ) p11 12 21 22 H H 11 21 11 21 H H 11 22 11 2211 21 11 22

, for the four genetic models in table 4.�0.075, P p 0.30, N p M p 500, T p 50D

is higher than or similar to that of . This may beT TH G

due to the lack of consideration of correlation between
the two blocks by (see the type I error comparisonTC

in table 2). Third, the power of is similar to that ofTC2

and higher than that of .T TH2 G2

To explore the effect of the degree of LD on the test
statistics, figure 5 plots power curves under an assump-
tion of linkage equilibrium between the two blocks H1

and for four models in table 4. From the four graphsH2

of figure 5, the power of is similar to or slightly higherTH

than that of , except for heterogeneous recessive andTC

multiplicative models, in which the power of isTH

slightly lower than that of . In all graphs of figure 5,TC

the power of and is higher than that of . FigureT T TC H G

6 plots power curves for different mutation ages of the
disease allele D for four models in table 4. For the four
models in table 4, the power is very high for a disease
mutation of , high for , and relativelyT p 30 T p 40
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Figure 3 Power curves of , , , and at significance level , using two haplotype blocks , andT , T T T , T T a p 0.01 H , l p 2 H ,C H G C2 H2 G2 1 2

, when ,r p 3 P(H ) p P(H ) p 0.5, P(H ) p 0.4, P(H ) p P(H ) p 0.30 D p P(H H ) � P(H )P(H ) p 0.075, D p11 12 21 22 23 H H 11 21 11 21 H H11 21 11 22

, for the four geneticP(H H ) � P(H )P(H ) p �0.0375, D p P(H H ) � P(H )P(H ) p �0.0375, P p 0.30,N p M p 500,T p 5011 22 11 22 H H 11 23 11 23 D11 23

models in table 4.

high for generations old. Figure 7 plots powerT p 50
curves of for different disease frequencies for theT PH D

four models in table 4. For recessive disease model in
table 4, a disease with frequency would haveP � 0.30D

high power if the haplotype block is close to the disease
locus. For the other three models in table 4, a disease
with frequency would have high power if theP � 0.20D

haplotype block is close to the disease locus (fig. 7).

Corresponding to the six figures for the less optimistic
models in table 4, we provide six figures for the opti-
mistic models in table 3 on our Web site. The power of
the heterogeneous recessive model in table 3 is low (figs.
1, 2, and 3 on our Web site). In contrast, the power of
the heterogeneous recessive model in table 4 is reason-
ably high (figs. 2, 3, and 4). In the absence of LD, the
power of is similar to or slightly higher than that ofTH
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Figure 4 Power curves of , , , and at significance level using two haplotype blocks , andT , T T T , T T a p 0.01 H , l p 2 H ,C H G C2 H2 G2 1 2

, when ,r p 4 P(H ) p P(H ) p 0.5,P(H ) p P(H ) p P(H ) p P(H ) p 0.25 D p P(H H ) � P(H )P(H ) p 0.075, D p11 12 21 22 23 24 H H 11 21 11 21 H H11 21 11 22

P(H H ) � P(H )P(H ) p 0.075, D p P(H H ) � P(H )P(H ) p �0.075, D p P(H H ) � P(H )P(H ) p �0.075, P p11 22 11 22 H H 11 23 11 23 H H 11 24 11 24 D11 23 11 24

, for the four genetic models in table 4.0.30, N p M p 500, T p 50

for the four models in table 3 (fig. 4 on our WebTC

site). For recessive disease model in table 3, the power
is low even for very young disease mutation ( )T p 10
(fig. 5 on our Web site). For the recessive disease model
in table 3, a disease with frequency wouldP � 0.15D

have high power if the haplotype block is close to the
disease locus. For the other three models in table 3, a

disease with frequency would have highP � 0.10D

power (fig. 6 on our Web site).

Sample Size

Table 5 gives sample size required for the four genetic
models in table 3 at significance level .01 and 80%
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Figure 5 Power curves of , and at significance level using two haplotype blocks , and ,T , T T a p 0.01 H , l p 2 H , r p 4C H G 1 2

when ,P(H ) p P(H ) p 0.5,P(H ) p P(H ) p P(H ) p P(H ) p 0.25 D p P(H H ) � P(H )P(H ) p 0.0, D p P(H H ) �11 12 21 22 23 24 H H 11 21 11 21 H H 11 2211 21 11 22

P(H )P(H ) p 0.0, D p P(H H ) � P(H )P(H ) p 0.0, D p P(H H ) � P(H )P(H ) p 0.0, P p 0.30, N p M p 500, T p11 22 H H 11 23 11 23 H H 11 24 11 24 D11 23 11 24

, for the four genetic models in table 4.50

power using two haplotype blocks , andH , l p 2 H ,1 2

. Except for heterozygous recessive disease withr p 4
low disease-allele frequency , the sample sizesP p 0.05D

required are !400 and are feasible in practice. For most
cases, the sample sizes required are !100. Table 6 gives
the sample sizes required for the four genetic models in
table 4 at significance level 0.01 and 80% power, using

two haplotype blocks , and . Com-H , l p 2 H , r p 41 2

pared with the sample sizes in table 5 for the four models
in table 3, the sample sizes in table 6 for the four models
in table 4 are much greater. For the recessive disease
model in table 4, the sample sizes required for low fre-
quency ( ) are 15,000, and so it may not beP � 0.10D

realistic to recruit enough patients for such disease stud-
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Figure 6 Power curves of for different mutation ages at significance level , using two haplotype blocks , andT a p 0.01 H , l p 2 H ,H 1 2

, when ,r p 4 P(H ) p P(H ) p 0.5, P(H ) p P(H ) p P(H ) p P(H ) p 0.25 D p P(H H ) � P(H )P(H ) p 0.075, D p11 12 21 22 23 24 H H 11 21 11 21 H H11 21 11 22

P(H H ) � P(H )P(H ) p 0.075, D p P(H H ) � P(H )P(H ) p �0.075, D p P(H H ) � P(H )P(H ) p �0.075, P p11 22 11 22 H H 11 23 11 23 H H 11 24 11 24 D11 23 11 24

, for the four genetic models in table 4.0.30, N p M p 500

ies. For all dominant disease models and recessive disease
models with high disease frequency ( or 0.30),P p 0.20D

the sample sizes required are !1,000 and are feasible in
practice. For the additive and multiplicative disease
models in table 4, the sample sizes required are !1,000,
except for low–disease-frequency cases ( ) orP p 0.05D

old disease mutations ( ).T � 50
For the sample sizes given in tables 5 and 6, we per-

form an empirical power calculation by 10,000 repli-
cates. The results for are pretty consistent with theTH

theoretical value of 0.80.

Discussion

The objective of this paper is to explore methods for
high-resolution haplotype or multiple-marker genome-
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Figure 7 Power curves of for different disease frequency at significance level , using two haplotype blocks , andT a p 0.01 H , l p 2H 1

, when ,H , r p 4 P(H ) p P(H ) p 0.5, P(H ) p P(H ) p P(H ) p P(H ) p 0.25 D p P(H H ) � P(H )P(H ) p 0.075, D p2 11 12 21 22 23 24 H H 11 21 11 21 H H11 21 11 22

P(H H ) � P(H )P(H ) p 0.075, D p P(H H ) � P(H )P(H ) p �0.075, D p P(H H ) � P(H )P(H ) p �0.075, T p 50,11 22 11 22 H H 11 23 11 23 H H 11 24 11 2411 23 11 24

, for the four genetic models in table 4.N p M p 500

association studies of complex diseases by case-control
designs. We investigated test statistics that combine in-
formation from haplotype blocks or multiple markers.
We introduced two Hotelling’s statistics and2T T TG H

to test association between a disease locus and two hap-
lotype blocks on the basis of two coding methods, ge-
notype coding and haplotype coding. By theoretical
analysis, we showed that they are valid test statistics.

Ignoring the correlation between the two blocks, one
may use an extension sum statistic, , of two traditionalTC

test statistics, and , for comparing haplotype2x T TC1 C2

frequencies in cases and controls. For each of the three
statistics, the power of using two haplotype blocks is
higher than that of using only one haplotype block. By
power comparison, we notice that has higher powerTC

than , and has higher power than .T T TH H G



862 Am. J. Hum. Genet. 72:850–868, 2003

Table 5

Sample Sizes Required for the Four Genetic Models in Table 3, at Significance Level 0.01 and 80% Power, Using Two Haplotype Blocks
, andH , l p 2 H , r p 41 2

MODEL TYPE

AND PD

REQUIRED SAMPLE SIZE

T p 20 T p 30 T p 40 T p 50 T p 60

TC TH TG TC TH TG TC TH TG TC TH TG TC TH TG

Heterogeneous
recessive:

.05 2,296 3,005 2,145 2,534 3,297 2,455 2,798 3,619 2,806 3,088 3,976 3,202 3,409 4,369 3,650

.10 193 279 241 213 303 271 235 329 303 258 358 339 285 390 379

.15 57 85 82 62 92 92 68 99 102 75 107 113 83 116 125
Heterogeneous

dominant:
.05 45 47 60 50 53 67 55 59 75 60 65 84 66 73 94
.10 26 24 29 29 27 33 32 30 38 35 34 43 39 38 48
.15 19 15 17 21 17 21 23 20 24 26 23 28 28 26 32

Additive:
.05 22 18 21 25 21 24 27 24 28 30 27 32 33 31 37
.10 20 16 18 22 18 21 24 21 24 27 24 28 29 27 32
.15 18 13 15 20 16 18 22 18 21 24 20 24 26 23 28

Multiplicative:
.05 29 34 47 32 38 51 35 41 56 38 46 62 42 50 68
.10 15 17 23 17 19 25 19 21 28 21 23 31 23 25 34
.15 12 11 15 13 13 17 14 14 19 15 16 22 17 18 24

NOTE.—Data shown are for ,P(H ) p P(H ) p 0.5, P(H ) p P(H ) p P(H ) p P(H ) p 0.25 D p P(H H ) � P(H )P(H ) p11 12 21 22 23 24 H H 11 21 11 2111 21

0.075, D p P(H H ) � P(H )P(H ) p 0.075, D p P(H H ) � P(H )P(H ) p �0.075, D p P(H H ) � P(H )P(H ) p �H H 11 22 11 22 H H 11 23 11 23 H H 11 24 11 2411 22 11 23 11 24

and .0.075, v p v p 0.0051 2

In the absence of LD between the two blocks, the
power of is similar to that of and is higher thanT TC H

that of . In the presence of LD between the twoTG

blocks, the type I error of is higher than those ofTC

and . Hence, we advocate to use in the dataT T TH G H

analysis. In the presence of LD between the two blocks,
takes into account of the correlation between theTH

two haplotype blocks and has the lowest type I error
and a higher power than . On the one hand, hasT TG G

the lowest power, although it takes into account the
correlation between the two haplotype blocks. On the
other hand, the type I error of gets bigger as theTG

number of haplotypes increases, which may be due to
the large degree of freedom. Therefore, is less fa-TG

vorable than .TH

Several empirical studies showed that the haplotypes
have block structures in human genome, and each hap-
lotype block has limited diversity (Daly et al. 2001;
Goldstein 2001; Patil et al. 2001; Reich et al. 2001;
Rioux et al. 2001; Stephens et al. 2001; Gabriel et al.
2002). The haplotype blocks are punctuated by appar-
ent sites of recombination or hot-spot areas. Within a
haplotype block, there are only a few (2–4) haplotypes,
and LD decays only gradually with distance. Within the
hot-spot areas, however, there may have been several
recombination events, and thus LD decays rapidly with
distance. The recombination events are clustered to be
hot spots. These patterns of LD are very relevant to

genomewide association studies for mapping complex-
disease genes. However, the general properties of hap-
lotype structure in human genome are not fully under-
stood. It is necessary to characterize patterns of LD in
the human genome, and to investigate approaches of
high resolution LD mapping of complex traits based on
haplotype block data.

The test statistics, such as and , that are basedT TH G

on multiallelic markers or haplotype blocks can usually
lead to a large number of df. However, when haplotype
block data are used, the df would not be very large if
one took into account the recent discovery of haplotype
structure in human genome. Although a haplotype
block may enclose many SNPs, it takes only a few SNPs
to uniquely identify each of the haplotypes in the block.
This implies that the number of df when haplotype
block data are used may be even less than that when
multiple SNP markers are used in an analysis. Moreover,
haplotype block data already take into account the hap-
lotype structure and potentially are more powerful.

In our analysis, only two haplotype blocks are dis-
cussed. One could generalize the method to use multiple
haplotype blocks in the analysis. One interesting topic
is to study the merit of a generalized that uses mul-TH

tiple haplotype blocks, instead of the current version of
, which uses only two haplotype blocks. Moreover,TH

the methods can be generalized to analyze pedigree data,
including sib pairs (Cordell and Clayton 2002). Other
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Table 6

Sample Sizes Required for the Four Genetic Models in Table 4 at Significance Level 0.01 and 80% Power Using Two Haplotype Blocks H ,1

, andl p 2 H , r p 42

MODEL TYPE

AND PD

REQUIRED SAMPLE SIZE

T p 30 T p 40 T p 50 T p 60

TC TH TG TC TH TG TC TH TG TC TH cTG

Heterogeneous
recessive:

.05 94,373 117,340 78,996 104,275 129,519 91,520 115,217 142,977 105,797 127,309 157,850 122,031

.10 6233 7965 5707 6883 8763 6555 7601 9644 7517 8394 10618 8607

.20 477 657 550 525 716 620 579 782 698 639 854 785

.30 125 183 173 138 198 192 152 215 214 167 233 238
Heterogeneous

dominant:
.05 469 576 771 517 635 851 570 699 939 629 770 1,036
.10 196 233 302 216 257 335 238 284 370 262 313 410
.20 109 121 145 120 134 162 132 149 181 145 165 202
.30 93 96 104 102 107 117 112 119 133 123 133 150

Additive:
.05 1,296 1,607 2,188 1,430 1,771 2,412 1,578 1,952 2,658 1,741 2,151 2,931
.10 421 520 703 464 572 774 512 630 853 564 694 940
.20 162 195 260 178 215 287 196 237 317 216 261 350
.30 102 119 157 112 132 174 123 145 192 136 160 212

Multiplicative:
.05 2,397 2,979 4,070 2,646 3,284 4,487 2,921 3,620 4,946 3,224 3,992 5,454
.10 669 836 1,141 737 919 1,256 813 1,012 1,382 897 1,114 1,522
.20 203 254 347 224 279 382 246 307 419 271 337 460
.30 107 133 182 118 146 200 130 160 219 143 176 241

NOTE.—All other parameters except the penetrance probabilities are the same as those in table 5.

issues, such as population-stratification effects and
methods of combining population and pedigree data,
are exciting research topics (Ardlie et al. 2000; Rannala
and Reeve 2001). If the data contain individuals with
missing genotypes within the haplotype blocks or with
genotyping errors, some potential problems can arise in
actual data analysis. The effect of uncertainty in the
haplotype block’s start and stop positions is unclear.
More investigations will be necessary to cope with these
challenges.
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Appendix A

Suppose that the disease locus has two alleles D and d, D being the allele for disease susceptibility and d being
normal. Assume that the disease-susceptibility allele D has population frequency , and normal allele d hasPD

population frequency . Let , and be the probabilities that an individual with genotypes ,P f , f p f f DD, Ddd DD Dd dD dd

and dd is affected with the disease, respectively. Since allele D is disease susceptible, one may assume f � f �DD Dd

. Let and . Denote the disease prevalence in the population by¯ ¯ ¯f f p 1 � f , f p 1 � f f p 1 � f A pdd DD DD Dd Dd dd dd

, and . As in quantitative genetics, let us introduce2 2 2 2¯ ¯ ¯¯f P � 2f P P � f P A p f P � 2f P P � f P p 1 � ADD D Dd D d dd d DD D Dd D d dd d

some notation. Let , and . In terms ofa p f � (f � f )/2,d p f � (f � f )/2, d p 2d a p a � (P � P )dDD DD dd Dd DD dd D D d D

quantitative genetics, is the average effect of gene substitution, and is the dominant deviation (Falconer anda dD D

Mackay 1996). Similarly, denote , and¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯¯ā p f � (f � f )/2 p �a,d p f � (f � f )/2 p �d, d p 2d p �2dDD DD dd Dd DD dd D

. Denote the measures of LD between haplotype of the first haplotype block and¯¯a p a � (P � P )d p �a H H¯ D d D D 1j 1

the disease locus D by , and the measures of LD between haplotype of theD p P(H D) � P(H )P ,j p 1, … ,l H1j 1j 1j D 2s

second haplotype block and the disease locus D by . For , theH D p P(DH ) � P(H )P ,s p 1, … ,r u p 1,22 2s 2s 2s D
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frequencies of heterozygous genotype in affected and unaffected individuals are calculated in appendixH H ,j ( k,uj uk

B as

a p P(H H FAff) p 2 �D D d /A � [D P(H ) � D P(H )]a /A � P(H )P(H ) (A1){ }ujk uj uk uj uk D uj uk uk uj D uk uj

¯ ¯¯ā p P(H H FUnaff) p 2 �D D d /A � [D P(H ) � D P(H )]a /A � P(H )P(H ) . (A2)¯{ }ujk uj uk uj uk D uj uk uk uj D uk uj

The frequencies of homozygous genotype in affected and unaffected individuals are calculated in appendixH Huj uj

B as

2 2a p P(H H FAff) p (�d )D /A � 2a P(H )D /A � P(H ) (A3)ujj uj uj D uj D uj uj uj

2 2¯ ¯¯ā p P(H H FUnaff) p (�d )D /A � 2a P(H )D /A � P(H ) . (A4)¯ujj uj uj D uj D uj uj uj

Under the null hypothesis of no association between the haplotype blocks and the disease locus D—thatH ,u p 1,2u

is, for all j, equations (A1), (A2), (A3) and (A4), imply the expectation for genotype coding
— —

D p 0 E(X � Y) p 0uj

method. In appendix C, we show

¯E(z FAff) p 2 D a /A � P(H ) , E(z FUnaff) p 2 D a /A � P(H ) . (A5)¯[ ] [ ]uij uj D uj uij uj D uj

Hence, we have which implies the expectation for
— —¯E(z FAff) � E(z FUnaff) p 2D a /A � a /A , E(X � Y) p 0¯[ ]uij uij uj D D

the haplotype coding method, under the null hypothesis of no association between the haplotype blocks H ,u pu

and the disease locus D.1,2

Appendix B

Notice that , , andP(H D) p D � P(H )P ,P(H d) p �D � P(H )P P(H D) p D � P(H )P P(H d) p �uj uj uj D uj uj uj d uk uk uk D uk

for . Using the expressionD � P(H )P u p 1,2 a p (f � f )/2 � (P � P )[f � (f � f )/2] p P f �uk uk d D DD dd d D Dd DD dd D DD

, the frequency of genotype in affected can be calculated asP f � P f � P f H H ,j ( k,d Dd D Dd d dd uj uk

P(H H FAff) p 2 P(H D)P(H D)f � P(H D)P(H d) � P(H d)P(H D) f � P(H d)P(H d)f /A{ [ ] }uj uk uj uk DD uj uk uj uk Dd uj uk dd

f � 2f � f P f � P f � P f � P fDD Dd dd D DD d Dd D Dd d ddp 2D D � 2P(H )P(H ) � 2[D P(H ) � D P(H )]uj uk uk uj uj uk uk ujA A

�d aD Dp 2D D � 2[D P(H ) � D P(H )] � 2P(H )P(H ) .uj uk uj uk uk uj uk ujA A

Similarly, the frequency of genotype in affected can be calculated asH Huj uj

2 2P(H H FAff) p [P(H D) f � 2P(H D)P(H d)f � P(H d) f ]/Auj uj uj DD uj uj Dd uj dd

2 2p (�d )D /A � 2a P(H )D /A � P(H ) .D uj D uj uj uj

Similarly, we may prove equations (A2) and (A4).
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Appendix C

Notice that and . From equations (A1) and (A3), the expectation of numbers of hap-� D p 0 � P(H ) p 1uk ukk k

lotypes in affected is equal toHuj

E(z FAff) p 2P(H H FAff) � P(H H FAff)�uij uj uj uj uk
k(j

2 2p 2 (�d )D /A � 2a P(H )D /A � P(H )[ ]D uj D uj uj uj

�d aD D�2 D D � [D P(H ) � D P(H )] � P(H )P(H ) ,� { }uj uk uj uk uk uj uk ujA Ak(j

p 2 D a /A � P(H ) .[ ]uj D uj

Similarly, one may show that the expectation of numbers of haplotypes in unaffected is equal toHuj
¯E(z FUnaff) p 2[D a /A � P(H )].¯uij uj D uj

Appendix D

Using the notations of in equations (A1), (A2), (A3), and (A4), we calculate the variance-¯ ¯a ,a ,j ( k,a ,aujk ujk ujj ujj

covariance matrices and . First, we calculate the variance of the number of haplotypes in affected byS S H¯A1 A1 uj

equations (A3) and (A5)

2 2Var (z FAff) p E(z FAff) � [E(z FAff)]uij uij uij

2p 2a � (2a � a ) � (2a � a )� �ujj ujj ujk ujj ujk
k(j k(j

2 2p 2 �d D /A � 2a P(H )D /A � P(H )[ ]D uj D uj uj uj

2

�2 D a /A � P(H ) �4 D a /A � P(H )[ ] [ ]uj D uj uj D uj

2 2 2p 2D [�d /A � 2a /A ]uj D D

�2D [1 � 2P(H )]a /A � 2P(H )[1 � P(H )] . (D1)uj uj D uj uj

Similarly, the variance of the number of haplotypes in controls isHuj

2 2 2¯ ¯ ¯¯Var (z FUnaff) p 2D [�d /A � 2a /A ] � 2D [1 � 2P(H )]a /A � 2P(H )[1 � P(H )] . (D2)¯ ¯uij uj D D uj uj D uj uj

By use of equations (A1) and (A5), the covariance between the number of haplotypes and the number ofHuj

haplotypes , in affected individuals isH j ( kuk

Cov (z ,z FAff) p E(z z FAff) � E(z FAff)E(z FAff)uij uik uij uik uij uik

p P(H H FAff) � E(z FAff)E(z FAff)uj uk uij uik

d aD Dp 2 �D D � [P(H )D � P(H )D ] � P(H )P(H )[ ]uj uk uj uk uk uj uj ukA A

�4 D a /A � P(H ) D a /A � P(H )[ ][ ]uj D uj uk D uk

2 2p2D D [�d /A � 2a /A ] � 2[P(H )D � P(H )D ]a /Auj uk D D uj uk uk uj D

�2P(H )P(H ) .uj uk
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Similarly, the covariance between the number of haplotypes and the number of haplotypes , in controlsH H j ( kuj uk

is

2 2¯ ¯ ¯¯Cov (z ,z FUnaff) p 2D D [�d /A � 2a /A ] � 2[P(H )D � P(H )D ]a /A � 2P(H )P(H ) .¯ ¯uij uik uj uk D D uj uk uk uj D uj uk

Appendix E

To calculate the covariance between , denote forz ,z j ( k,s ( t1ij 2is

g p E[1 1 FAff]jjss (H H ) (H H )1j 1j 2s 2s

2 2p P(H DH ) f � 2P(H DH )P(H dH )f � P(H dH ) f /A ,[ ]1j 2s DD 1j 2s 1j 2s Dd 1j 2s dd

g p E[1 1 FAff]jjst (H H ) (H H )1j 1j 2s 2t

p 2 P(H DH )P(H DH )f � [P(H DH )P(H dH )[ 1j 2s 1j 2t DD 1j 2s 1j 2t

�P(H dH )P(H DH )]f � P(H dH )P(H dH )f /A ,]1j 2s 1j 2t Dd 1j 2s 1j 2t dd

g p E[1 1 FAff]jkss (H H ) (H H )1j 1k 2s 2s

p 2 P(H DH )P(H DH )f � [P(H DH )P(H dH ){ 1j 2s 1k 2s DD 1j 2s 1k 2s

�P(H dH )P(H DH )]f � P(H dH )P(H dH )f /A , and}1j 2s 1k 2s Dd 1j 2s 1k 2s dd

g p E[1 1 FAff]jkst (H H ) (H H )1j 1k 2s 2t

p 2 [P(H DH )P(H DH ) � P(H DH )P(H DH )]f{ 1j 2s 1k 2t 1j 2t 1k 2s DD

�[P(H DH )P(H dH ) � P(H dH )P(H DH )]f1j 2s 1k 2t 1j 2s 1k 2t Dd

�[P(H DH )P(H dH ) � P(H dH )P(H DH )]f1j 2t 1k 2s 1j 2t 1k 2s Dd

�[P(H dH )P(H dH ) � P(H dH )P(H dH )]f /A . (E1)}1j 2s 1k 2t 1j 2t 1k 2s dd

For and , the covariancej p 1, … ,l � 1 s p 1, … ,r � 1

Cov (z ,z FAff) p E(z z FAff) � E(z FAff)E(z FAff)1ij 2is 1ij 2is 1ij 2is

p 4g � 2 g � 2 g � g� � ��jjss jjst jkss jkst
t(s k(j k(j t(s

�4[D a /A � P(H )][D a /A � P(H )] .1j D 1j 2s D 2s

Similarly, for and , the covariancej p 1, … ,l � 1 s p 1, … ,r � 1

Cov (z ,z FUnaff) p E(z z FUnaff) � E(z FUnaff)E(z FUnaff)1ij 2is 1ij 2is 1ij 2is

¯ ¯¯ ¯ ¯ ¯p 4g � 2 g � 2 g � g � 4[D a /A � P(H )][D a /A � P(H )] ,¯ ¯� � ��jjss jjst jkss jkst 1j D 1j 2s D 2s
t(s k(j k(j t(s

where and are expected genotype frequencies in controls like those defined in equation (E1) for¯ ¯ ¯ ¯g ,g ,g gjjss jjst jkss jkst

cases.
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Appendix F

To calculate the noncentrality parameter , we notice first that the expectationlG

— —— — EX �EY1 1— —E(X � Y) p ,( )EX �EY2 2

where is equal to , and
— — t¯ ¯ ¯ ¯ ¯E(X � Y ) [a � a , … ,a � a ,a � a , … ,a � a , … ,a � a ]1 1 111 111 1(l�1)(l�1) 1(l�1)(l�1) 112 112 11l 11l 1(l�1)l 1(l�1)l

is equal to .
— — t¯ ¯ ¯ ¯ ¯E(X � Y ) (a � a , … ,a � a ,a � a , … ,a � a , … ,a � a )2 2 211 211 2(r�1)(r�1) 2(r�1)(r�1) 212 212 21r 21r 2(r�1)r 2(r�1)r

Let be the variance-covariance matrix of genotype coding . Then its elements can be calculated byS XG i

where if and if ,2Var (x FAff) p a � a , j p 1, … ,l � 1 u p 1 j p 1, … ,r � 1 u p 2 Var (x FAff) p a �uij ujj ujj uijk ujk

if , for ,2a ,j ( k, Cov (x ,x FAff) p �a a k � 1 Cov (x ,x FAff) p �a a m ( kujk uij ui(j�k) ujj u(j�k)(j�k) uij uimk ujj umk

for and .Cov (x ,x FAff) p �a a j ( k s ( tuijk uist ujk ust

Using the notation in equations (A1), (A3), and (E1), the covariances between and are given byx ,x x ,x1ij 1ijk 2is 2ist

Cov (x ,x FAff) p g � a a ,1ij 2is jjss 1jj 2ss

Cov (x ,x FAff) p g � a a ,1ij 2ist jjst 1jj 2st

Cov (x ,x FAff) p g � a a , and1ijk 2is jkss 1jk 2ss

Cov (x ,x FAff) p g � a a .1ijk 2ist jkst 1jk 2st

Similarly, we may calculate the variance-covariance matrix for the controls. Then the noncentrality parameter—SG

of is given byl TG G

�1—NM (N � 1)S � (M � 1)S— — — —G Gtl p (EX � EY) (EX � EY) .[ ]G N � M N � M � 2

Using the variance-covariance matrices and of the genotype coding vector in affected and unaffectedS S X¯G1 G1 1i

individuals, one may calculate the noncentrality parameter similarly.lG1
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